Agenda

5/8/18

- Closure of First MoU
- Marodi Water Balance
- Discussion on phase II MoU
- Budget and schedule

Closure of First MoU

Work done and ongoing

- Prepared zones for 850 villages.
- Generated plugin output for 600 phase I villages and uploaded them to PoCRA app server to enable data collection and water budgeting in App.
- App Training Manual for Water Budgeting part of app further refined and finalized through discussion with PoCRA PMU.
- Help in DPR checking prepared by micro-planning agencies.
- Providing support to PMU in resolving the issues or problems faced by microplanning agencies, clusters assistants, Agri assistants in computation of water budget.
- Item A1 Analysis of NBSS & LUP data.
- Item A4 Working on Automation of zoning process.
- Item A6 Analsis of Mahabhulekh Data.

Marodi Water Balance Zone 1

Rainfall	845.6	558.1	506.4	921.8	546.0	675.58
		Zone		Zone	Zone	Average_Zone_
All Values are in TCM	Zone 1_2013	1_2014	Zone 1_2015	1_2016	1_2017	1
Monsoon protective irrigation req. (deficit)	116.8	60.1	356.0	73.9	270.7	175.5
Storage Available for Crops In Monsoon	4.4	4.4	4.4	4.4	4.4	4.4
GW Available for Crops in Monsoon	18.7	0.3	0.0	10.7	0.3	6.0
Monsoon Balance: Current Supply - Demand	-93.7	-55.4	-351.6	-58.7	-266.0	-165.1
Monsoon Protective Irrigation Index	0.20	0.08	0.01	0.20	0.02	0.06
Rabi Total Water Requirement	566.4	1044.5	651.5	686.9	530.6	696.0
Drinking Water Requirement	0.0	0.0	0.0	0.0	0.0	0.0
Water Available from Soil Moisture	202.2	157.6	30.7	212.2	67.9	134.1
Water Available from GW	37.5	0.6	0.0	21.5	0.7	12.0
Storage Available for Crops in Rabi Season	4.4	4.4	4.4	4.4	4.4	4.4
Rabi Balance: GW supply+SM+structures-Rabi						
Demand-Drinking Water	-322.4	-881.9	-616.5	-448.9	-457.6	-545.4
Post Monsson Protective Irrigation Index	0.43	0.16	0.05	0.35	0.14	0.22
Water Available from Runoff	374.0	305.2	216.7	540.2	106.8	308.6
Additional Water Available for Impounding	365.2	296.4	207.9	531.4	98.1	299.8

Marodi Village Water Balance

Rainfall	845.6	558.1	506.4	921.8	546.0	675.58
All Values are in TCM	Village_2013	Village_2014	Village_2015	Village_2016	Village_2017	Average_Village
Monsoon protective irrigation req. (deficit)	293.6	150.3	814.3	186.7	644.3	417.8
Storage Available for Crops In Monsoon	7.7	7.7	7.7	7.7	7.7	7.7
GW Available for Crops in Monsoon	32.9	0.3	0.0	14.9	2.3	10.1
Monsoon Balance: Current Supply - Demand	-253.0	-142.2	-806.7	-164.1	-634.3	-400.1
Monsoon Protective Irrigation Index	0.14	0.05	0.01	0.12	0.02	0.04
Rabi Total Water Requirement	1163.8	2117.9	1333.6	1404.3	1092.3	1422.4
Drinking Water Requirement	20.2	20.2	20.2	20.2	20.2	20.2
Water Available from Soil Moisture	373.6	273.5	72.4	387.2	146.8	250.7
Water Available from GW	65.9	0.6	0.0	29.8	4.5	20.2
Storage Available for Crops in Rabi Season	7.7	7.7	7.7	7.7	7.7	7.7
Rabi Balance: GW supply+SM+structures-						
Rabi Demand-Drinking Water	-716.6	-1836.1	-1253.5	-979.5	-933.2	-1143.8
Post Monsson Protective Irrigation Index	0.38	0.13	0.06	0.30	0.14	0.20
Water Available from Runoff	759.9	628.8	453.3	1096.7	237.1	635.1
Additional Water Available for Impounding	744.5	613.4	437.9	1081.3	221.7	619.8

Rainfall 2015 & 2017

Rainfall 2016 & 2017

2016 2017

Discussion on phase II MoU

- A1-Soil Analysis on Yavatmal Data
- A2 and A3 Better estimation of ET and PET for Non agricultural lands, Micro irrigated lands.
- A4 Incorporation of Groundwater Flows
- A5 Groundwater Flows
- A6 Zoning Automation
- A7 Analysis of Mahabhulekh Data for PoCRA app
- E1 and E2 dashboard design, extension.
- E3 and E4 Point level app

Item A1-Soil Analysis on Yavatmal Data

				_					MR	SAC	Data				
	Soil	L	с	НМ	SL	Si	GS	м	GCL	GC	CL	GL	sc	WM	GSL
	text	s				L	CL						L		
	ure														
N	i	0	1	0	0	0	0	0	0	1	0	0	0	0	0
SS	m	38	546	118	113	96	823	6	210	194	1099	15	54	274	634
			1						1						
P	k	0	440	3	27	14	28	11	146	3	62	2	2	7	52
	h	0	16	0	13	0	7	0	41	2	56	5	1	0	23
Da	f	1	253	5	9	0	152	0	381	39	163	10	25	26	558
ta															
Maximum Value in Row															
Max	Maximum Value in Column														
Max	imum Va	lue in	both Ro	ow & Co	lumn										

Notations used:-

- 1. CL-Clay loam
- 2. C-Clayey
- 3. GC-Gravelly clay
- 4. GCL-Gravelly clay loam
- 5. GL-Gravelly loam
- 6. GSCL-Gravelly sandy clay loam
- 7. GSL-Gravelly sandy loam
- 8. LS-Loamy sand
- 9. SCL-Sandy clay loam
- 10. SL-Sandy loam
- 11. SiL-Silty loam
- 12. HM-Habitation Mask
- 13. WM-Waterbody Mask
- 14. M-Mining

Item A1-Soil Analysis on Yavatmal Data

		MRSAC Data										
	Soil Dept h	D	VS	DTV D	HM	S	М	WM	MD	VD	STVS	
	0	12	4	0	91	130	14	220	34	231	23	
NBSSLUP Data	1	101	55	0	8	2080	0	8	698	489	297	
	2	67	178	0	5	1002	0	8	405	690	147	
	3	87	3	1	5	354	0	21	255	823	79	
	4	22	0	1	1	216	0	0	143	453	44	
	5	0	0	0	0	72	0	0	29	78	6	
	6	138	15	3	16	627	3	50	395	2579	95	

Notations used:-

. M-Mining

- 2. WM-Waterbody Mask
- B. HM-Habitation Mask
- . VS-Very shallow (< 10 cm)
- . S-Shallow (10 to 25 cm)
- . STVS-Shallow to very shallow (< 25 cm)
- MD-Moderately deep (25 to 50 cm)
- . D-Deep (50 to 100 cm)
- DTVD-Deep to very deep (> 50 cm)
- 10. VD-Very deep (> 100 cm)

Maximum Value in Row
Maximum Value in Column
Maximum Value in both Row & Column

Cont.

- Better Inputs will increase the water balance computation.
- Soil Texture and Soil Depth Analysis of 10 villages to give us actual values od soil composition to br used in model.
- MRSAC or NBSS&LUP have not given these values.
- Texture/depth validation of NBSSLUP data with MRSAC.
- Possible Collaboration with NBSS & LUP.

• 2 Man Month + 2 month

A2 and A3 – Better estimation of ET and PET for Non agricultural lands, Micro irrigated lands

- Primary Approach Prepare a framework and set of field experiments to compute Kc values for the Important crops like soyabean, cotton, tur, moong etc. and work with SAU's.
- Secondary Approach Use of Satellite products available and weather parameters for better computation of PET, ET and water productivity.
- Water productivity measures the annual increase in water productivity at sub district level (taluka); it is expressed as a ratio of agricultural production (in kg) over evapotranspiration (in m3). It is measured from Year 3 onwards and for kharif season only. It is expressed as percentage change relative to a baseline value of 0.23 kg per cubic meter.

NASA Satellites for Water Resources Monitoring

- Landsat: 07/1972 present
- Tropical Rainfall Measuring Mission (TRMM): 11/1997 – 04/2015
- Global Precipitation Measurements (GPM): 02/2014 – present
- Terra: 12/1999 present
- Aqua: 05/2002 present
- Soil Moisture Active Passive (SMAP): 01/2015 – present
- Gravity Recovery and Climate Experiment (GRACE): 03/2002 – present
- Jason 1, 2, 3: 12/2001 present

MODIS (Moderate Resolution Imaging Spectroradiometer)

- Spatial Resolution
 - 250m, 500m, 1km
- Temporal Resolution
 - Daily, 8-day, 16-day, monthly, quarterly, yearly
 - 2000-present
- Data Format
 - Hierarchal data format Earth Observing System Format (HDF-EOS)

- Spectral Coverage
 - 36 bands (major bands include Red, Blue, IR, NIR, MIR)
 - Bands 1-2: 250m
 - Bands 3-7: 500m
 - Bands 8-36: 1000m
- Orbital gaps

Normalized Difference Vegetation Index (NDVI)

- Leaf Area Index (LAI)
- Albedo (fraction of surface solar radiation reflected back)

VIIRS Visible Infrared Imaging Radiometer Suite

- Spatial Resolution
 375 m, 750 m
- Temporal Resolution
 - Daily, 8-day, 16-day, monthly, quarterly, yearly (2012-present)
- Spectral Coverage
 - 22 bands
 - Major bands include R,B, IR, NIR, MIR
 - "I" bands: 375 m
 - "M" bands: 750 m
 - Day-night band: 800 m

No orbital gaps

VIIRS was launched on 28 October, 2011

Landsat: 30 Years of Observations

- Has a thermal band that is important for some ET approaches

Importance of ET

- The sum of evaporation from the land surface plus transpiration from plants.
- ET transfers water from land surface to the atmosphere in vapor form.
- Energy is required for ET to take place (for changing liquid water into vapor)
- ET depends on many variables:
- solar radiation at the surface
- land and air temperatures
- humidity
- surface winds
- soil conditions
- vegetation cover and types
- Highly variable in space and time

ET can be derived primarily from:

- Surface Water Balance
- ET = Precipitation + Irrigation Runoff Ground Water + Vertical Water
- Transport ± Subsurface Flow ± Soil Water Content
- Surface Energy Balance
- ET (Latent Heat Flux) = Net Surface Radiation Ground Heat Flux –Sensible Heating Flux
- Meteorological and Vegetation/Crop Data (Penman-Monteith Equation)

Surface energy balance

ET is calculated as a "residual" of the energy balance

Sensible Heat Flux (H)

 $H = (\rho \times c_p \times dT) / r_{ab}$

Surface Radiation Balance

Net Surface Radiation = Gains – Losses

 $R_L = \epsilon \sigma T^4$ ε=emissivity

Soil heat flux

 $G = f R_n$

- · Fraction depends on direct exposure
- Fraction depends on pace of warming up
- f = 0.4 for deserts
 - = 0.1 for crops
 - = 0.5 for water bodies
 - = 0.05 for forests

Penman-Monteith Equation for ET

- R_n: net surface radiation
- G: ground heat flux
- (e_s-e_a): vapor pressure deficit
- r_a & r_s: aerodynamic & surface resistance
- γ: psychrometric constant
- λ : latent heat constant
- c_p: specific heat constant

- Requires climate and crop information
- r_a & r_s depend on Vegetation Height, Leaf Area Index (LAI)
- R_n depends on the fractional solar radiation reflected back from the surface (albedo)
- LAI and albedo are both available from MODIS

Challenges

- Landsat passes over each 16 days
- Parts of the image area are often cloudy
- Landsat 'snapshot' may miss the evaporation from rain events in between satellite dates

• Computation of water productivity using landsat or Modis.

Identify suitable pixels and suitable farmers for the following components. This will Improve the existing water balance model.

- Evaporation from Non ag landuse area and treated area
- Kc management for various crops important for project area.
- Study, Incorporating and validating Drip/sprinkler PET's for various crops.
- I. 2 Man months for Primary Experimentation.
- II. 3 man months for studying existing approaches or models for ET computation, various satellite products available from different countries.
- III. 3 man months for various components like kc for different crops, non ag land and impact of drip and sprinkler.
- IV. 1 man month for developing PET model for daily computation using various weather parameters. Item E3
- V. 3 man months for integration into the dashboard. Item E3
- 2 Man Months + 3 man months + 3 man months

A4 Incorporation of Groundwater Flows

PoCRA soil moisture balance model

The current PoCRA model is based on the point level daily soil moisture balance model

Which takes daily rainfall as input and gives 1. point/farm level soil moisture

- 2. Crop AET
- 3. Surface runoff generated at farm level and
- 4. Vertical groundwater recharge at farm level

From this daily balance, all these quantities are Aggregated for the whole season

At the same time, all the quantities are Aggregated spatially for the zones

This is very important to determine crop water stress/deficit during kharif season and identify the vulnerable regions in the village

Hiware bajar map

Need for estimating regional flows Post - kharif Thus, soil moisture is in-situ can be transferred from kharif 100 mm to rabi on the same farm is not transferred from one Gw flows 70 mm farm to other Surface runoff and Groundwater flows are local artificia regional recharge, individua agricultural land Recharge and runoff farm good soil generated on one farm or on undwate non-ag land during kharif are surface transferred to different farms in rabi (due to gradients and geological setup) Thus, cannot be transferred area treatment from kharif to rabi on the CCT. LBS etc non-agricultural same farm land, poor soil

Hiware bajar map

Gw and surface flows towards stream proximity (pedgaon, parbhani)

Way ahead

- Thus, there are significant transfers of w1 + w2 water from p3 farmers to p1 or p2 farmers
- Identifying recharge and discharge areas to estimate the intra-zone flow transfers is important. PoCRA zones if realigned with this logic, can help in estimating these regional natural transfers of water
- These are important factors which need to be considered while planning for the interventions.
- New models required
 - Water balance for impounding structures to determine actual gw rechagred (currently only volume of impounding structure considered which might underestimate the gw recharge)
 - Simple thumbnail conceptual GW flow model for intra-zone flows which can be verified / validated by MODFLOW

3 month

Item A6 Zoning Automation

- Partial automation of zones is achieved.
- Testing is on going.
- Inclusion of stream proximity.
- Achieving its automation.

• 1 Man Month + 3 month

Steps of Zoning

- 1. Generate Stream and Watershed from DEM
- 2. Load Village and Watershed Layer
 - a. Add zone_area attribute to watershed layer
 - b. Apply Eliminate Sliver Polygons algorithm with appropriate threshold to watershed layer
- 3. Intersect Village and Cleaned Watershed Layer
- 4. Clip the Intersected layer to generate separate polygons for each village
 - a. Update the zone_area attribute of each Clipped layer
- 5. Clean the separated polygons individually
 - a. Use v.clean with appropriate threshold for each layer
- 6. Merge all the Cleaned Layers
 - a. Update the zone_area attribute of the merged layer

In short..

Intersected Layer

Zoning

Merged Layer

Running Zoning Script

Copy paste the script and click on "Run Script" option

Note:-You need to set the "path" variable to DEM, Village Boundary containing folder before running the script.

Inclusion of stream proximity

 Variation in Surface and ground water availability in stream proximity and non proximity will be taken into account
Item- A7 Analysis of Mahabhulekh Data for PoCRA app

Need of the Mahabhulekh data

- Cropping pattern data is critical for water budget computation as it is representative of actual cropping pattern in the zone and same can be used to evaluate the new zoning* criteria.
- Currently we are running cropping pattern over entire region and then aggregating over entire agricultural region of the zone.
- If we get the cropping data consistent with the cadastral maps then it can be used to compute the water budget of the region with respect to its cropping pattern.
- Efficient Zone based Water Budgeting
- Reduced Computation Time
- Advisory Support
- Enable Predictions

Comparative Analysis on Mahabhulekh & Cadastral Data

For a given district and taluka, the ccode(state census code for village), Location/Village name and Gat number count for both Mahabhulekh and Cadastral data can be obtained for all the villages.

Below is one such sample (Yavatmal-Kalamb):-

	Mah	abhu_Gat_no_co	unt MRSAC_Gat_no_count
ccode	location	gat_no_count	p_gat
271400030171660000	<u>चापर्डा</u>	30	121
271400030171670000	<u>बेलोना</u>	44	136
271400030171680000	घोटी	37	170
271400030171690000	कूळंब (खंड 1)	61	Kalamb=993
271400030171690000	कळंब खंड2	152	Kalamb=993
271400030171700000	मलकापुर	31	. 54
271400030171770000	<u>ज्ञोंधळणी</u>	28	29
271400030171780000	दत्तापुर	10	73
271400030171810000	औरंगपुर	5	15
271400030171850000	सातेफळ	13	59

Comparative Analysis on both data

It can be seen that there is significant difference in the cadastral and mahabhulekh data count of gat no.Also, it has been observed that the data sent in postgres db form is less than that of sent in excel format.

	Data Analysis:	
Parameter	Mahabhulekh	Cadastral (PoCRA)
District Count	12	15

Missing:-Hingoli,Parbhani,Washim

District Name:- Akola

Parameter	Mahabhulekh	Cadastral (PoCRA)
Taluka Count	7	7
Villag	e Gat Number Count for	Taluka
Taluka name	Mahabhulekh Village Count	Cadastral (PoCRA) Village Count
Akola	19	199
Akot	6	180
Balapur	2	103
Barshitakli	4	159
Murtijapur	2	162
Patur	3	96
Telhara	4	106

2-4 man months

Item B, C, D

Planning and Measurement Framework to Target Project Development Objectives

Target Project Development Objectives by streamlining Planning and Measurement Framework

Planning Activities

- 1. Targeting vulnerable smallholder farmers
- 2. Incorporating planning based on spatial variability
- 3. Planning to enable farmer movement into higher income category

Targeted PDO

- 1. Increased Water productivity
- Improved yield uniformity and stability (spatial and temporal yield variability)

1,2,3,4

3. Annual farm income

Measurement activities

- Increase in yield for main kharif and rabi crops
- Inter zonal yield variation, increased water availability, rabi area etc.
- 3. Farmer movements to higher return crops
- 4. yield/water given for selected beneficiaries

Participants: Shubhada Sali, Pooja Prasad

2,3

Total Man months: 9-12

Key Tasks

B. Development of suitable indices aligned with PDO's

• We follow Budyko principles (Also as in S. Muddu)

C. Developing Guidelines for Planning so that plans are aligned with B

D. Evaluation and analysis of DPR to ensure that B and C are followed

Measuring watershed yields: Budyko curve

Indicator: Improved Water utilisation

- AET/Effective Rainfall: Indicates the extent of rainfall being useful to crops with optimal value at 1
- AET/PET indicates the extent of water requirement fulfilled and an indicator of yield (optimal value at 1)

We plot village operating point based on water allocations to various crops from water budget based planning framework.

Tracking water productivity: Yield Watering Curve

- The operating point on yield watering curve for each of main P1, P2 and P3 crops in village will be measured and its movement towards optimum point will be tracked temporally.
- The water allocation regime based on planning framework will be utilized for this.

<u>Yield * Area</u> (AET+Water Allocation) (kg/cum)

If Yield watering curves for main crops in PoCRA region are available from Agricultural universities

- 1. enable tracking wrt optimum point
- 2. Enable measurement of water given to crops

Old indices and its problems

1. Monsoon protective irrigation index:

Monsoon supply $((\frac{1}{2})$ of arrested runoff + $(\frac{1}{3})$ of ground water recharge) Monsoon Demand (Monsoon protective Irrigation requirement)

2. Post Monsoon water use index:

 $((\frac{1}{2}) \text{ of arrested runoff} + (\frac{2}{3}) \text{ of ground water} + (\text{soil moisture for rabi})$ Post monsoon crop deficit + drinking water requirement

Typical village indices

Village	Paradgaon (2927 ha, 547 mm- 2013 rainfall	Ghusar (2887 ha, 588 mm - 2015 rainfall)	Wadhwi (562 ha, 473 mm 2017 rainfall)
Monsoon supply in TCM	505	232.7	618
Monsoon demand in TCM	3214	737	167
Monsoon Index	0.16 (-2709 TCM)	0.31 (-505 TCM)	0.27 (-446 TCM)
Post Monsoon supply in TCM	1808	1968	259
Post Monsoon demand in TCM	8504	6841	443.4
Post Monsoon index	0.21 (-6697 TCM)	0.28 (-4837 TCM)	0.59 (-183 TCM)
Main crops	Cotton (45% area), others soybean, tur	Cotton (54% area) and Moong (28% area)	soyabean (61%) and Tur (19%)

Connection with PDO's not clear, largely intervention and planning based indices....

Problems and need for refined indices

- Dryland farming involves less irrigation translating into low AET for high PET
- Crops are watered based on their risk and returns
- Crops like soybean, moong, bajra are not watered at all in preference of watering to high return crops like cotton, onion in kharif.

In order to take field practices, risks and returns of crops into account there is need to develop crop hierarchy and water allocation framework

 In case of long kharif crops like cotton and Tur with 350 mm of post monsoon requirement, at most 2 irrigations are given by farmers in November to get optimum yield. 250 mm of irrigation requirement in not met.

To account for dryland irrigation there is a need to consider optimum point on yield watering curve

Crop hierarchy and Water Allocation framework

- Measuring compulsory load (P1) and discretionary load (P2,P3) in the village
- Measuring Water availability W1- surface storage, W2 GW recharge and W3 soil moisture
- Strategizing intervention planning to convert P2 load to P1, P3 load to P2 or P1 to more area

- Preparing norms to limit no. of proposed farm ponds, wells
- Measuring how much additional land can be brought under P1 crops without damaging P3 crops
- This can be converted into an handheld planning analysis app

Crop Hierarchy and water allocation based on irrigation priority

Priority	Description	Kharif crops	Rabi crops	Current cropped Area (ha)
P1	100% committed water	Sugarcane, mosambi, limbu, grapes,		42
P2	Plan to irrigate (but may be unable to)	Soybean, irrigated cotton/tur	Wheat	588*
Р3	No plan to irrigate	Rainfed cotton, tur, Mung, Kharif Jowar, Bajri	Harbhara, Rabi Jowar (fodder)	2866*
* Note: sind	e we do not hav	e separate c	ropped area fo	or irrigated
and rainfed	crops it is assun	ned that 10%	of cotton and	tur area is
	irrigate d	and 90% is ra	ainfed	

Water Allocation

- 1. Allocate W1, W2 and W3 water to reach 0.9 AET/PET for P1 crops
- 2. If water remains after satisfying P1 demand - allocate remaining water to reach 0.7 AET/PET for P2 kharif crops
- 3. If water remains after satisfying P2 kharif demand allocate the remaining water to P2 rabi crops, P3 rabi crops in sequence.
- Water allocations will be studied and refined based on farming practices
- To study and develop crop hierarchy based on risks, returns and input costs

Key Indices - Water Productivity + Zone-level Temporal variability

- 1. AET/PET (yield index) and water availability (AET/P) at zone level for each crop type, i.e., P1-P3.
- Pre-plan, post-plan for next 3 years.
- Secondary. Based on year-wise cropping pattern, rainfall, completed interventions and simulation (water budget).

- To be done for all project villages, and all years with circle rainfall.
- Detailed methodology to be developed and documented.
- Extension of PoCRA App will be provided.

Secondary measurements: AET/PET

Zone 2

Zone 3

(Village Suleman Deola)

- Movement towards water limit from CSGY to PSGY indicates improved water utilization
- Movement towards right on PET/P axis indicates increase in cropping area or cropping pattern shift.

(note that the PET/P in bad year are higher because of low rainfall)

PoCRA aims to minimize this variation in bad and good year (climate resilience) and track improved water availability

Zonal details: Suleman Deola

	CSGY	7 - 753 mm	2017	PSGY	′ - 753 mm	2017	CGB	7 - 218 mm	2015	PSB	Y 218 mm	2015
Indicators	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3
PET/rainfall	0.9	1.1	0.8	1.0	1.2	0.8	3.1	3.7	2.7	3.3	3.6	2.9
AET/PET (energy limit)	0.4	0.4	0.3	0.4	0.5	0.3	0.2	0.3	0.2	0.2	0.2	0.2
AET/P (natural water limit)	0.4	0.5	0.3	0.4	0.5	0.3	0.6	0.9	0.5	0.7	0.7	0.5
Ag Area in ha	211	303	325	211	303	325	211	303	325	211	303	325
Non Ag Area in ha	44	9	186	44	9	186	44	9	186	44	9	186
Effective Rainfall in mm												
(P)	910	775	1184	910	775	1184	263.5	224.5	342.8	263.5	224.5	342.8
Effective Rainfall in TCM	1920.2	2349.4	3847.8	1920.2	2349.4	3847.8	555.9	680.2	1114.0	555.9	680.2	1114.0
P1 Area	14	15	15	14	15	15	14	15	15	14	15	15
P2 kharif Area	52	41	120	63	60	135	52	41	120	63	60	135
P2 rabi Area	24	31	32	36	51	62	24	31	32	36	51	62
P3 kharif area	145	247	190	134	228	175	145	247	190	134	228	175
P3 rabi area	113	175	262	113	175	262	113	175	262	113	175	262
P1 PET (mm)	69	60	37	69	60	37	69	60	36	69	60	36
P2 kharif PET (mm)	163	163	188	187	234	204	162	163	187	186	138	203
P3 kharif PET (mm)	235	325	154	221	305	144	233	321	153	219	302	143
P2 rabi PET (mm)	56	58	37	83	95	71	56	58	37	83	95	71
P3 rabi PET (mm)	155	196	179	155	196	179	155	196	179	155	196	179

Key Indices - Farmer Spatial and Temporal Variability

2. AET/PET (yield index), actual yield and water availability (AET/P) at farmer level for each crop type.

- Pre-plan, post-plan for next 3 years.
- Primary. Based on cropping pattern, CCT and irrigation history
- Two levels Interview and CCT based.

Done for selection of direct beneficiary and indirect beneficiary farmers, across various zones and stream-proximity.

Detailed methodology will be developed.

New farmer survey app will be provided. Extension of DB form will be undertaken.

Measurements: Farm Level to Village Level

Activities:

- 1. Interview Based Rapid Assessments
- 2. Crop Cutting Tests for Yield Measurement

Sampling and Village selection to be decided

- For villages selection at Taluka Level -sample size 30 40 farmers
- For village selection in Cluster Sample size 10-12 farmers

Field Level data Collection for Measurement Activity

1.Crop cutting reports and survey of 10-12* / 30-40* samples farmers in each village based on delineated criteria.

2. Water Budget computed for measurement years

- 3. Cropping Pattern data for village
- 4. Market prices of selected crops in village to decide crop hierarchy P1-P2-P3.

5. Input costs per hectare for selected crops in village

Water productivity

Computation:

<u>Yield * Area</u> (AET+Water Allocation) (kg/cum)

-Conducted at Village level/Zone level for P1, P2 and P3 crops together covering atleast 80% area in village.

- Conducted separately for Main P1 crop, P2 kharif crop and P3 kharif crop at village/zone level

- Conducted for sample farmers in each zone to gauge spatial yield variability

PDO4: Annual Farm/Village income

PDO Indicator	Index	Crops	Measurables	Level
 Shift in cropping pattern at village level Track movement of P1, P2 and P3 category farmers to higher income group. Measure shift in cropping pattern and shift in minimal profitability 	 1.Ratio of P1:P2:P3 kharif crop area 2. Ratio of profitability range - profitability from P1:P2:P3 	 1.Main P1 crop, 2.Main P2 kharif 3.Main P3 Kharif (typically rainfed) These three crops in total should cover at least 80% of village agricultural area 	 Selected P1, P2 and P3 crop yields from CCT for village P1, P2 and P3 crop area in hectare Market price of selected crops for measurement year Input cost of selected crops per hectare 	Village Level indicator

Farmer Selection Guidelines for Measurements

Farmer category	Main Crops	Intervention	Farm location	Indicator
Measures vulnerability	Measures impact on crop choice	Measures impact of intervention	Measures spatial variance	Measures productivity
P3 farmer with no assets and no watering given	Main P3 kharif crop in village	Public Intervention - streamline (CNB/MNB/PT)	In stream proximity below intervention location	Yield benefit to near stream small holder farmers
P2 farmer with no assets	Main P2 kharif crop in village	Public Intervention - streamline (CNB/MNB/PT)	In stream proximity below intervention location	Yield benefit to near stream small holder farmers
P2 farmer with new watering asset	Main P2 kharif crop in village	away/not impacted by public intervention	Away from stream proximity	Yield benefit due to project intervention
P3 farmer with new watering asset	Main P3 kharif crop in village	away/not impacted by public intervention	Away from stream proximity	Yield benefit due to project Intervention

*Indirect beneficiaries - pink, direct beneficiaries - purple

Continued..

(for rabi season)

Farmer category	Crops	Intervention Farm location		Indicator
P3 farmer with no assets and no watering given	Main P3 rabi crop in village	Public Intervention - streamline (CNB/MNB/PT)	In stream proximity below intervention location	Yield benefit to near stream small holder farmers and movement to high return crop in rabi
P2 farmer with no assets	Main P2 rabi crop in village	Public Intervention - streamline (CNB/MNB/PT)	In stream proximity below intervention location	Yield benefit to near stream small holder farmers
P2 farmer with new watering asset	Main P2 rabi crop in village	away/not impacted by public intervention	Away from stream proximity	Yield benefit due to project intervention
P3 farmer with new watering asset	Main P3 rabi crop in village	away/not impacted by public intervention	Away from stream proximity	Yield benefit due to project Intervention

Other Indices

Net Rabi land and (Rabi PET) pre-plan, post-plan

Area under micro-irrigation.

Net P1,P2 and P3 land and (PET in mm/hectare) pre-plan, post-plan

Data Analysis Support.

- Integration of village level data sets. Geographical analysis. Integration with spatial and temporal indices of PDOs.
- Statistical analysis of farmer data and validation of secondary indices.
- Correlation of farmer and village level data to get kg/m^3
- Use of satellite images to cross-validate.

Target Project Development Objectives by streamlining Planning and measurement Framework

Planning Activities

- 1. Targeting vulnerable smallholder farmers
- 2. Incorporating planning based on spatial variability
- 3. Planning to enable farmer movement into higher income category

Targeted PDO

1. Increased Water productivity

2,3

 Improved yield uniformity and stability (spatial and temporal yield variability)

1,2,3,4

3. Annual farm income

Measurement Activities

- Increase in yield for main P1,P2 and P3 kharif and rabi crops
- Inter zonal yield variation, increased water availability, rabi area etc.
- 3. Farmer movements P3->P1, P3->P2, P2->P1
- 4. yield/water given for selected beneficiaries

Total Man months: 9-12

Participants: Shubhada Sali, Pooja Prasad

Sample Village Measurements: Suleman Deola, Bid

Village Area: 1079 hectare

Zone 1 (ha)	Zone 2 (ha)	Zone 3 (ha)	Village (ha)
211	303	325	839
14	15	15	44
142	208	240	590
136	206	294	636
44	9	187	240
255	312	512	1079
	Zone 1 (ha) 211 14 142 136 44 255	Zone 1 (ha) Zone 2 (ha) 211 303 14 15 142 208 136 206 44 9 255 312	Zone 1 (ha) Zone 2 (ha) Zone 3 (ha) 211 303 325 14 15 15 142 208 240 136 206 294 44 9 187 255 312 512

Analysis conducted for 4 scenarios -

- 1. Current state good year (CSGY)
- 2. Current state bad year (CSBY)
- 3. Proposed state good year(PSGY)
- 4. Proposed state bad year (PSBY)

Good year 2017: 753 mm rainfall

Bad year 2015: 218 year rainfall

Cropping pattern: Current and sample Proposed to see impact on indices

	Existing	Existing Cropping pattern		Proposed cropping pattern			pattern		İ
Zone Cropping	Zone 1	Zone 2	Zone 3	Village	Zone 1	Zone 2	Zone 3	Village	Сгор
in hectare	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	(ha)	Category
Bajra	55	80	70	205	55	80	65	200	P3
Moong	18	42	31	91	13	33	26	72	P3
Maize		4	2	6		4	2	6	P3
Soyabean	12	37	32	81	12	37	32	81	P3
Udid	25	34	15	74	19	24	10	53	P3
onion	0	0	0	0	11	19	15	45	P2
Tur	35	50	40	125	35	50	40	125	P3
Cotton	52	41	120	213	52	41	120	213	P2
Orange	12	12	12	36	12	12	12	36	P1
Pomegranate	2	3	3	8	2	3	3	8	P1
Gram	16	16	27	59	16	16	27	59	P3
Onion	17	19	23	59	23	29	38	90	P2
Jowar / fodder	96	159	235	490	96	159	235	490	P3
Wheat	7	12	9	28	13	22	24	59	P2
Rabi Area	136	206	294	636	148	226	324	698	
Current Fallow	44		20.3	64.3	44		20.3	64.3	-
Non Ag			2.7	2.7			2.7	2.7	-
Permanent			10	10			10	10	
Fallow			13	15			13	15	-
scrub		9	145	154		9	145	154	-
Total Agricultura	211	303	325	839	211	303	325	839	
Zone Area	255	312	512	1079	255	312	512	1079	

cropping pattern varied to -

- 10% movement from P3 kharif to P2 kharif (Moong, udid -> Onion)
- Overall 10%
 increase in rabi land
 for onion and wheat
 P2 crops

Interventions: current and proposed water allocation

Intervention categorization	Water categorization
CCT	W2
Deep CCT	W2
Compartment Bunding	W2&W3
Loose Bolder	W2
Gabion Bunds	W2
Community farm pond	W1
Farm pond with plastic	W1
Percolation Tank	W1
Nala Deepening	W1
CNB	W1
MNB	W1

- Water from non-ag area treatment is accounted in W2 ground water.
- 90% of water from compartment bunding is accounted in W2 and 10% in W3 soil moisture

Water Allocation Existing in				
ТСМ	Zone 1	Zone 2	Zone 3	total
W1	16.8	42.2	19.8	78.8
W2	9	9	9	27
W3				0
Water Allocation Proposed				
in TCM	Zone 1	Zone 2	Zone 3	Total
W1	76	58	91	224
W2	78	68	250	396
W3	0	4	20	25
W2 model GW good year	70.7	121.9	191.7	384.4
W2 model GW bad year	15.28	25.87	67.38	108.53
Available runoff good year	543.96	617.02	1188.92	2349.90
Available runoff bad year	138.91	122.44	351.44	612.80

Secondary measurements: AET/PET Deola)

Zone 1

7one 2

Zone 3

(Village Suleman

- Movement towards water limit from CSGY to PSGY indicates improved water utilization
- Movement towards right on PET/P axis indicates increase in cropping area or cropping pattern shift.

(note that the PET/P in bad year are higher because of low rainfall)

PoCRA aims to minimize this variation in bad and good year (climate resilience) and track improved water availability

Zonal details: Suleman Deola

	CSGY - 753 mm 2017		PSGY - 753 mm 2017		CGBY - 218 mm 2015		PSBY 218 mm 2015					
Indicators	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3	Zone1	Zone2	Zone3
PET/rainfall	0.9	1.1	0.8	1.0	1.2	0.8	3.1	3.7	2.7	3.3	3.6	2.9
AET/PET (energy limit)	0.4	0.4	0.3	0.4	0.5	0.3	0.2	0.3	0.2	0.2	0.2	0.2
AET/P (natural water limit)	0.4	0.5	0.3	0.4	0.5	0.3	0.6	0.9	0.5	0.7	0.7	0.5
Ag Area in ha	211	303	325	211	303	325	211	303	325	211	303	325
Non Ag Area in ha	44	9	186	44	9	186	44	9	186	44	9	186
Effective Rainfall in mm												
(P)	910	775	1184	910	775	1184	263.5	224.5	342.8	263.5	224.5	342.8
Effective Rainfall in TCM	1920.2	2349.4	3847.8	1920.2	2349.4	3847.8	555.9	680.2	1114.0	555.9	680.2	1114.0
P1 Area	14	15	15	14	15	15	14	15	15	14	15	15
P2 kharif Area	52	41	120	63	60	135	52	41	120	63	60	135
P2 rabi Area	24	31	32	36	51	62	24	31	32	36	51	62
P3 kharif area	145	247	190	134	228	175	145	247	190	134	228	175
P3 rabi area	113	175	262	113	175	262	113	175	262	113	175	262
P1 PET (mm)	69	60	37	69	60	37	69	60	36	69	60	36
P2 kharif PET (mm)	163	163	188	187	234	204	162	163	187	186	138	203
P3 kharif PET (mm)	235	325	154	221	305	144	233	321	153	219	302	143
P2 rabi PET (mm)	56	58	37	83	95	71	56	58	37	83	95	71
P3 rabi PET (mm)	155	196	179	155	196	179	155	196	179	155	196	179

Spatial variability: Zonal AET/PET and Yield

This indicator will track spatial and temporal improvement in water availability. (movement of zones towards water limit)

- Zone 2
- Zone 3

Zone 1

Measure temporal variability due to varying rainfall and target for reducing it

- Zone 1
 - Zone 2 (plan to meet Prioritized crop demand even in bad year)
 - Zone 3

Planning

1.To develop farmer prioritization guidelines based on

- -> data collected in DBT form (gat no., current assets, cropping pattern, irrigation)
- -> vulnerability and stream proximity maps

Broad Guidelines

- a. Target small holder P3 farmers without watering sources in offstream areas first to enable availability of water for protective irrigation
- b. Target small holder P3 farmers without watering assets in stream proximity region for movement to high return crops in P2 or P1 category
- c. Target P2 farmers for movement to higher category

Intervention prioritization guidelines

- Guidelines for intervention selection will be developed
 - Guidelines for well allocation in stream areas (4TCM), well allocation in non stream areas (1.5 TCM)
 - Guidelines for Farm Pond allocation to check if Farm pond will get filled
 - Guidelines for capping no. of wells and farm ponds based on water budget

Targeted Project Development Objectives and ToR Items contributing to it

TOR Items contributing to PDO measurement

- 1. B1 Design of village level water accounting framework.
- 2. B2 Design of vulnerability, risk indices and key performance indices
- C1 Design of planning and index measurement survey format for integration with microplanning and M&E process
- 4. C2 Development of farmer level app
- 5. C3 Addition of plan analysis section to PoCRA water budget applet
- 6. D1 Updation of DPR assessment guidelines
- 7. D2 Field Assessment of DPR (5-8 villages)
- 8. D3 Desk assessment of DPR
| ltem
no. | Objectives | Overall Strategy | Man
months |
|-------------|--|--|---------------|
| B1 | Design of Village level water accounting framework | Measurement of W1, W2, W3 water, P1, P2 and P3 loads and their allocation to strategize village/zone level planning | 4-5 |
| B2 | Design of risk, vulnerability indices to enable analysis
of various allocations. Design of key performance
indices | Design of indices based on current QGIS model output, existing maps and water accounting framework | 4-5 |
| C1 | developing village level planning guidelines based on
framework and indices and Design of Survey formats
for integration of planning framework with
microplanning | analysing various allocations and designing indices to develop planning
guidelines.
Integrate with DBT form for minimal data collection required for planning
and monitoring of indices based on B. | 2 |
| C2 | Farmer app for individual intervention selection guidelines | Prioritization guidelines based on farmer category, assets, survey and geographical location | 2 |
| C3 | Addition of Plan Analysis section to PoCRA water budget applet | Integration of B1, B2 into app to generate village water accounting from village water budget. | 3-4 |
| D1 | Updation of DPR assessment guidelines | Design based on field visit and interaction with project employees consisting of TAO, Project specialists, Microplanning agencies staff and cluster assistants. | |
| D2 | Field Assessment of DPR (5-8 villages) | Maximum 2-3 villages per month | 3-4 |
| D3 | Desk assessment of DPR | 3-4 DPR per month based on data to be assessed | 3-4 |

Indices Backup

Measuring shift in cropping pattern

Zone 1 Shift in categories can be a measure of marginal increase income Zone 2 Zone 3

Measuring shift in cropping pattern: Rabi

Zone 1 Zone 2 Zone 3

Shift in categories can be a measure of marginal increase income

Part E: GIS based Dashboard

Dashboard (Items E1+E2)

Purpose:

- Immediate:
 - Real-time (daily) geo-referenced tracking of the status of field-level technical parameters; in particular, soil-moisture deficit/crop stress
 - Platform for georeferenced technical/research inputs-outputs
- Extended:
 - Enable the incorporation of technical planning and advisory support
 - Enable the creation of a platform that eases any drudgery in the technical processing components and streamlines the end-to-end technical process.

sm_cotton_2013_on_day_110_max_sm_606
 sm_cotton_2013_on_day_75_max_sm_661
 sm_cotton_2013_on_day_30_max_sm_656
 deficit_as_ratio_cotton_2013_on_day_110_min_ratio_0p5697
 deficit_as_ratio_cotton_2013_on_day_75_min_ratio_0p7312
 deficit_as_ratio_cotton_2013_on_day_30_min_ratio_0p8287
 Deficit_as_diff_cotton_2013_on_day_110_max_deficit_193
 Deficit_as_diff_cotton_2013_on_day_75_max_deficit_68
 Deficit_as_diff_cotton_2013_on_day_30_max_deficit_14
 o district_legend
 District

(More details, options and features to be added in the actual implementation)

PET - AET on day 30

sm_cotton_2013_on_day_110_max_sm_606
 sm_cotton_2013_on_day_75_max_sm_661
 sm_cotton_2013_on_day_30_max_sm_656
 deficit_as_ratio_cotton_2013_on_day_110_min_ratio_0p5697
 deficit_as_ratio_cotton_2013_on_day_75_min_ratio_0p7312
 deficit_as_ratio_cotton_2013_on_day_30_min_ratio_0p8287
 Deficit_as_diff_cotton_2013_on_day_110_max_deficit_193
 Deficit_as_diff_cotton_2013_on_day_75_max_deficit_68
 Deficit_as_diff_cotton_2013_on_day_30_max_deficit_14
 odistrict_legend
 District

PET - AET on day 110

sm_cotton_2013_on_day_110_max_sm_606
 sm_cotton_2013_on_day_75_max_sm_661
 sm_cotton_2013_on_day_30_max_sm_656
 deficit_as_ratio_cotton_2013_on_day_110_min_ratio_0p5697
 deficit_as_ratio_cotton_2013_on_day_75_min_ratio_0p7312
 deficit_as_ratio_cotton_2013_on_day_30_min_ratio_0p8287
 Deficit_as_diff_cotton_2013_on_day_110_max_deficit_193
 Deficit_as_diff_cotton_2013_on_day_75_max_deficit_68
 Deficit_as_diff_cotton_2013_on_day_30_max_deficit_14
 o district_legend
 District

AET / PET on day 30

sm_cotton_2013_on_day_110_max_sm_606
 sm_cotton_2013_on_day_75_max_sm_661
 sm_cotton_2013_on_day_30_max_sm_656
 deficit_as_ratio_cotton_2013_on_day_110_min_ratio_0p5697
 deficit_as_ratio_cotton_2013_on_day_75_min_ratio_0p7312
 deficit_as_ratio_cotton_2013_on_day_30_min_ratio_0p8287
 Deficit_as_diff_cotton_2013_on_day_110_max_deficit_193
 Deficit_as_diff_cotton_2013_on_day_75_max_deficit_68
 Deficit_as_diff_cotton_2013_on_day_30_max_deficit_14
 Ø district_legend
 District

AET / PET on day 110

Dashboard: User-level design

- Geo-referenced tracking of physical parameters:
 - Display status as state-wide raster layers
 - One raster layer each for each desired status-variable (like moisture content, crop stress, AET/PET, etc.)
 - Basic GIS map features: Zoom-in/zoom-out, Pan, Pixel Selection, etc.
 - Crop-wise rasters: Until cropping-pattern is available, user will have option to select crop
 - Support for historical status, e.g. status during earlier years, as estimated by the model using available historical data.
- Geo-referenced tracking and access to technical information:
 - Region-wise information: District-wise, Cluster-wise, Village-wise, etc.
 - Technical statistics for user-selected regions
 - Track the status of technical inputs(data) and outputs(results/reports) for user-selected region

Dashboard: Implementation design

- The Dashboard will be a web-application hosted on PoCRA's server
- Based on
 - Django python framework for server-side development
 - Postgres+Postgis as the database
 - Client-side GIS libraries like OpenLayers or Leaflet as deemed suitable
- Estimation of status is to be based on a particular soil-moisture(SM) model already available from phase-1
- API-access for externally available weather data required by the model

Version 2: The current SM-model uses fixed ET0 values per district per month. An ET0estimation model based on weather parameters will be decided and implemented to incorporate current field level ET0 values in the SM-model.

Dashboard: Issues in implementation

- Missing data:
 - slope values, rainfall circle
 - workaround by using neighbouring pixel/circle values
- Performance:
 - Background process runs the model for each of the desired points using previous day's status
 - With finest resolution at 50m-grid, ~ 120 million points for Maharashtra
 - What finest resolution is possible depends on the performance of the server machine
- Cloud-based server scenario:
 - Decision to use only thriving open-source software systems/tools and frameworks
 - Timely support expected to resolve issues, if any, with such softwares on the cloud-machine
 - Difficult to closely mimic the cloud environment in development environment; so will have to monitor live performance carefully and adjust computational load that updates the daily status

Dashboard: Schedule

- 1. For Immediate features (georeferenced tracking):
 - a. Server-side scripting and building database: 2 man-months
 - b. Client-side scripting: 3 man-months
 - c. Background status-updation process: 1 man-month
 - d. UAT, deployment, tuning: 2 or more man-months (depends on cloud environment and support)

Current status: Database creation underway, server-side models being designed.

1. For extended features (support for technical planning, advisory and end-to-end technical data and process flow) :

Depends on exact requirements

Item – E4 Farm based Water Budgeting Android App

App Working & Features

6:10 PM	😇 🗣 🖂 🚄 2월 💼 96%			
Farmer Name	AR Arrmer Name IL TYPE Hayey IL DEPTH ery deep (> 100 cm) VD USE griculture DPE 34783554077148 OP auliflower AR			
SOIL TYPE				
Clayey	-			
SOIL DEPTH				
Very deep (> 100 cm)	~			
LAND USE				
Agriculture	~			
SLOPE				
7.34783554077148				
CROP				
Cauliflower	-			
YEAR				
2013	*			
	,			

5:10 PM	😇 🤜 🖂 🏹 🗎 96%				
7.34783554077148					
CROP					
Cauliflower	-				
YEAR					
2013	-				
Monsoon End Date					
10/10/2013					
Water in mm per Irrigation					
35	*				
NUMBER OF IRRIGATION					
0	-				
Detail Output					
RUN					
= 0	<				

-Farmer Name-Required

-Check "Detail Output" for daily computation values

-All fields can be adjusted manually

Location Displayed

Values Fetched from Server

Click Run for Output

Output Graphs

-Computation values include:

- PET
- AET
- PET-AET
- Runoff
- GW
- Rainfall
- Irrigation

-"Save Output" option will generate a report will graphs,summary values and all the input values

Daily values for Crop

Cumulative values for Crop

Summary values for Crop

7:25 PM

😳 🗨 🐭 🛹 🛱 100%

< SWAPNIL_Amravati_Cauliflower.txt

Mon Sep 03 18:12:00 GMT+05:30 2018 District : Amravati Lattitude : 20.96790348969531 Longitude : 77.71057024598122 Crop : Cauliflower Soil Type : clayey Depth_Value :1.5 Day 0 AET 0.0 Dav 0 PET 0.0 Day 0 SM 0.0 Day 0 Runoff 0.0 Day 0 Rainfall 0.0 Day 0 Irrigation 0.0 Day 0 Rainfall+Irrigation 0.0 Day 0 Ground Water Recharge 0.0 Day 1 AET 0.0 Day 1 PET 0.0 Day 1 SM 0.0 Day 1 Runoff 0.0 Day 1 Rainfall 0.0 Day 1 Irrigation 0.0 Day 1 Rainfall+Irrigation 0.0 Day 1 Ground Water Recharge 0.0 Day 2 AET 0.0 Day 2 PET 0.0 Day 2 SM 0.0 Day 2 Runoff 0.0 Dav 2 Rainfall 0.0 Day 2 Irrigation 0.0 Day 2 Rainfall+Irrigation 0.0 Day 2 Ground Water Recharge 0.0 Day 3 AET 0.0 Day 3 PET 0.0 Day 3 SM 0.0 Day 3 Runoff 0.0 Day 3 Rainfall 0.0 Day 3 Irrigation 0.0 Day 3 Rainfall+Irrigation 0.0 Day 3 Ground Water Recharge 0.0 Day 4 AET 0.0 Day 4 PET 0.0 Day 4 SM 0.0

-The report will be generated with name as: FarmerName_DistrictNa me_CropName.pdf at location "storage/emulated/0".

-The daily log value file (if checked) will be generated at location "storage/emulated/0/And roid/data/com.example.s udhanshu.gis/files" with name as: FarmerName_DistrictNa me CropName.txt

Daily Values Log

Output Saved in Report

Summary Values Saved in Report

App Download Information

PoCRA site link- <u>https://www.cse.iitb.ac.in/~pocra/Android_app/app-debug.apk</u>

Additional Permissions to app:

- Access Device Location
- Storage Access

The permissions to the App are required to be given by going manually at Setting->Permissions->FarmBudget or permission pop-up during startup of app depending upon the android version.

Note:-It is recommended to turn on GPS before starting the application .

Issues In the App

- 1. If the app crashes when it starts make sure that the GPS is turned on.
- 2. Even after turning on the GPS if the app still crashes it is due to instant unavailability of GPS location ,so it is recommended to wait for a minute to get the app working. This may not be the case with all android versions.
- 3. The "Detail Output" option if checked will take time(2-3 sec) to generate the outputs as it will be logging the daily computation values to the file in the back-end which is heavy operation with respect to time.
- 4. After clicking "Next" button on the map activity if the app takes time to fetch values from the server then it is most likely the Server issue, so in any such cases feel free to write us at pocra@cse.iitb.ac.in

Item G and Item H

- Workshop, collaboration with agricultural university.
- Curriculum design for field work
- Extension of Dashboard for other project activities

F: Training Videos

Need: Enable repetitive and quality training of PoCRA team at various levels for water budgeting and planning.

Methodology: IITB to do research, direction and provide scripting support to video making agency by handling this assignment.

Benefits: Easily accessible video training material for PoCRA project.

Participants: Shubhada Sali

Manmonths: 8-9

Zoning and Mahabhulekh Backup

Step 1:- Generate Stream & Watershed from DEM

DEM

Step 2:-Load Village and Watershed Layer

Village Layer

Drainage Layer

Watershed Layer

Step 3:-Intersect Village & Cleaned Watershed Layer i)Zone_area attribute updated

ii)ESP applied

iii)Intersection algorithm applied

	value	label	zone_area	OBJECTID_1	STNCODE	DVNCODE	DTNCODE	THNCODE	VINCODE	VIL_NAME
1	158		2547190.1	9733	27	2704	525	04240	561463	Ambehol
2	126		847750.55	2523	27	2704	525	04240	561462	Junoni
3	128		1878206.1	2523	27	2704	525	04240	561462	Junoni
4	128		1878206.1	9733	27	2704	525	04240	561463	Ambehol
5	124		3826745.0	2523	27	2704	525	04240	561462	Junoni
б	124		3826745.0	9733	27	2704	525	04240	561463	Ambehol
7	162		1818309.1	9733	27	2704	525	04240	561463	Ambehol
8	124		900.00000	2523	27	2704	525	04240	561462	Junoni
9	114		866949.28	2523	27	2704	525	04240	561462	Junoni
10	114		866949.28	2526	27	2704	525	04240	561464	Walgud
11	164		1080.0250	9733	27	2704	525	04240	561463	Ambehol
12	130		1667224.8	2523	27	2704	525	04240	561462	Junoni

Intersected Layer

Step 4:-Clip the Intersected layer to generate separate polygons

Intersected Layer

Clipped Layers

Step 5:-Clean the separated polygons individually

Step 6:-Merge all the Cleaned Layers

Village Count for Mahabhulekh & Cadastral data

Taluka-wise count of villages and total count for district:-e.g Akola

mhrorako_akt_gat_count.csv----6
mhrorako_tel_gat_count.csv----4
mhrorako_pat_gat_count.csv----3
mhrorako_bar_gat_count.csv----4
mhrorako_mur_gat_count.csv----2
mhrorako_bal_gat_count.csv----2
mhrorako_ako_gat_count.csv----19
Total Villages= 40

akola_akot_gat_count.csv----180 akola_akola_gat_count.csv----199 akola_telhara_gat_count.csv----106 akola_murtijapur_gat_count.csv----162 akola_barshitakli_gat_count.csv----159 akola_balapur_gat_count.csv----103 akola_patur_gat_count.csv----96 Total Villages= 1005

Mahabhulekh Village Count

Cadastral Village Count

Discrepancies in the Mahabhulekh data

- 1. Missing Survey numbers in villages
- 2. Non-Standard formats for survey number representation
- 3. Number of villages covered is significantly less than known number of villages present in taluka (Village count given in folder of each district taluka-wise)
- 4. Some districts are missing (Hingoli, Parbhani, Washim)

Similar, taluka wise analysis for cadastral data is provided to cross-check the count of talukas, districts, gat_nos, etc. including missing data for mahabhulekh.

P.S. Wardha does not have location info in cadastral so its comparative data is missing in both sources.